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Density-functional theory of pair correlations in metallic hydrogen
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The pair correlations in the metallic phase of hydrogen are reconsidered on the basis of a simple density-
functional formulation of the free energy of the ion-electron plasma, which includes a square-gradient correc-
tion to the Thomas-Fermi kinetic energy of the degenerate electrons. A robust prescription is given for the
prefactor of the square-gradient correction. The functional leads to a hypernetted-chain–like closure for the
ion-ion and ion-electron correlation functions, which is solved iteratively, in conjunction with the coupled
Ornstein-Zernike equations relating the matrices of pair and direct correlation functions. The resulting structure
agrees well with availableab initio simulation data based on the Kohn-Sham functional. A density- and
temperature-dependent effective ion-ion pair potential is obtained by formally reducing the initial two-
component system to a one-component fluid of pseudoatoms. The results show strong deviations of the present
nonlinear theory from the standard linear screening approach forr s.1 ~wherer s is the usual inverse density
parameter equal to the ratio of the electron sphere radius over the Bohr radius!. The long-wavelength ion
density fluctuations are strongly enhanced as the density drops, and at the lowest density (r s51.5) the ion-ion
pair structure and effective potential exhibit an unusual behavior, at the lower temperature explored in this
paper (T533103 K), which may be interpreted as a precursor to an incipient plasma-insulator transition.
Thermodynamic properties are estimated from the pair structure. The influence of nonlinear electron polariza-
tion on the equation of state is found to be surprisingly small, but the isothermal compressibility increases
sharply at the lowest density.@S1063-651X~98!03501-6#

PACS number~s!: 05.30.Fk, 61.20.2p, 31.15.Ew
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I. INTRODUCTION

Metallic systems, including metals under normal con
tions and pressure-ionized~metallic! hydrogen, are basically
two-component plasmas made up of an ionic species
‘‘free’’ conduction electrons. The ionic species may be eith
fully stripped, i.e., reduced to bare nuclei, or retain tigh
bound core electrons; except under high-density conditi
~as may occur in degenerate stellar matter!, the de Broglie
thermal wavelength associated with the ions is much
than the mean interionic spacing, so the ionic compon
may be safely described by classical statistical mechan
On the other hand, the density of metallic systems is usu
sufficiently high for the Fermi temperatureTF associated
with the free electrons to greatly exceed the thermodyna
temperatureT. In other words, the degeneracy parame
u5T/TF!1, so, to a good approximation, the electron
component may be regarded as fully degenerate: For
‘‘frozen’’ ionic configuration, the inhomogeneous gas
conduction electrons is in its ground state. The fact that m
tallic systems may, over a broad range of physical con
tions, be assimilated to a neutral mixture of two charg
fluids, one classical and the other degenerate, must of co
be traced back to the large mass ratio of ions and electr
This large mass ratio also justifies the adiabatic or Bo
Oppenheimer approximation, whereby the electronic com
nent may be regarded as readjusting its ground state q
instantaneously to the much slower ionic motions. On
time scale of the latter, the electrons may be regarded
forming an inhomogeneous, degenerate, interacting Fe
fluid in the ‘‘external’’ field provided by the ions in thei
571063-651X/98/57~1!/211~13!/$15.00
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instanteneous configuration. This inhomogeneous elec
fluid is most efficiently described within the density
functional theory~DFT! developed by Hohenberg, Kohn
and Sham@1,2# and generalized to finite temperatures
Mermin @3#. A conceptually similar formulation has bee
proposed by Percus@4# for classical inhomogeneous fluids

For a number of applications, it is convenient to consid
both components, i.e., the classical ionic fluid and the deg
erate electronic fluid, to be inhomogeneous on average
other words, the equilibrium state of a metallic system m
be characterized by two spatially varying~local! densities
r1(r ) andr2(r ) associated with the ions~species 1! and the
electrons~species 2!. This point of view has been be adopte
in a DFT description of freezing of an ion-electron syste
@5# or to derive a set of equations for a quantitative desc
tion of pair correlations in a dense ion-electron plasma
number of papers deal with this second application. Th
differ by the treatment of the kinetic-energy part in the e
ergy functional of the degenerate electrons. In the work
Dharma-wardana and Perrot@6# and Chihara@7#, the Kohn-
Sham independent-particle orbital point of view@2# is
adopted, while in the more recent work of Oferet al. @8#, the
simpler Thomas-Fermi approximation to the kinetic ener
is used. The two types of electron energy functionals
combined with a hypernetted-chain~HNC! closure relation
@9# for ion-ion correlations. It is interesting to note that the
two points of view also show up in theab-initio simulations
of ion-electron systems: In the method of Car and Parrine
@10#, the Kohn-Sham representation is used, while
Thomas-Fermi kinetic-energy functional@11# or improve-
ments thereof@12# have been successfully used in ‘‘orbita
211 © 1998 The American Physical Society
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212 57HONG XU AND JEAN-PIERRE HANSEN
free’’ first-principles simulations. The latter seem to be p
ticularly well adapted to metallic systems, for a number
technical reasons@13#. Both Kohn-Sham@14,15# and orbital-
free@11# simulations have been applied to metallic hydrog
which is the object of the present paper.

We adopt the orbital-free point of view for the electron
kinetic-energy functional, going beyond the Thomas-Fe
approximation@8# ~which is expected to be particularly poo
for hydrogen!, by including a square-gradient correctio
@16#, which is crucial for a proper description of the electr
density very close to the nuclei. The approach may be fur
improved by going to a hybrid functional proposed by Per
@17#, which incorporates the correct linear response of
eletron fluid. The DFT formulation is restricted to fully ion
ized plasmas in this paper, i.e., the ions reduce to bare nu
the presence of bound states~core electrons! may be ac-
counted for by the use of ion-electron pseudopotentials o
a self-consistent DFT scheme as proposed by Chihara@18#
within the Kohn-Sham formulation. As in Ref.@6–8#, the
HNC closure is used to determine ion-ion correlations.

The present DFT of ion-ion and ion-electron correlatio
expounded in Secs. II–IV, is applied to hydrogen~i.e., a
mixture of protons and electrons! in Secs. V and VI, over the
range of densitiesr s<1.5, where hydrogen is expected to
metallic ~no bound states!. In Sec. VII we consider the prob
lem of calculating thermodynamic properties of metallic h
drogen, a question that has received very little attention
previous DFT and simulation work. Concluding remarks a
contained in Sec. VIII.

II. IONS AND ELECTRONS

Within the ‘‘two-fluid’’ picture, a metallic system is mad
up of a classical ionic component~species 1!, containingn1
ions ~nuclei! of chargeZ1e and massm1 per unit volume,
and a degenerate electronic component~species 2!, contain-
ing n2 electrons of charge2e and massm2 per unit volume.
Charge neutrality impliesZn15n2 . It is convenient to adop
atomic units, wheree51, m251, and\51; lengths are then
in units of the Bohr radius (aB5\2/m2e251) and energies
are expressed in hartrees (e2/aB51), i.e. multiples of 27.2
eV. The radius of a sphere containing, on average, one e
tron is r s5(3/4pn2)1/3, while the corresponding ion-spher
radius is a15r sZ

1/3. The Fermi wave numbe
kF5(9p/4)1/3/r s , while the Thomas-Fermi~TF! wave num-
ber iskTF5(12/p)1/3/r s

1/2.
The Hamiltonian may be decomposed into ionic and el

tronic parts and an ion-electron coupling term

H5H11H21V12 ~1!

and

Ha5Ka1Vaa , ~2!

whereKa and Vaa denote the kinetic and the potential e
ergy of interaction of speciesa. Introducing the microscopic
density operators

r̃ a~r !5(
i 51

Na

d~r2r i ,a!, ~3!
-
f

,

i

er
t
e

ei;

y

,

-
in
e

c-

-

wherer i ,a is the position of thei th particle of speciesa, and
noting thatZ1[Z and Z2[21, the potential-energy term
Vab may be cast in the compact form

Vab5
ZaZb

11dab
E drE dr 8@ r̃ a~r ! r̃ b~r 8!

2dab r̃ a~r !d~r2r 8!#
1

ur2r 8u
. ~4!

Full ionization has been assumed in writing Eq.~4!, i.e., the
interactions between all particles are purely Coulombic.
tegrations are over the total volumeV of the system.

To discard any divergence problems of the separate c
tributionsH1 , H2 , andV12 in the thermodynamic limit, it is
convenient to add and substract a uniform~neutralizing!
background, of~charge! density n0[n2 @19#. The Hamil-
tonian ~1! is then recast in the form

H5H181H281V128 , ~5!

where

H185H11V001V01, ~6a!

H285H22V00, ~6b!

V128 5V122V01, ~6c!

with

V005
n0

2

2 E drE dr 8
1

ur2r 8u
, ~7a!

V0152n0Z1E drE dr 8
r̃ 1~r !

ur2r 8u
. ~7b!

Note thatH18 is precisely the Hamiltonian of the widely stud
ied ~classical! one-component plasma~OCP! @20#, while H28
is that of jellium, introduced by Wigner@21# as a model for
electrons in metals. In the ultrahigh-density limitr s→0, the
ratio of the TF wavelengthlTF51/kTF'r s

1/2 over the mean
distance between electrons, approximately equal tor s , di-
verges, so the electronic component behaves like a r
~nonpolarizable! background; the ion-electron coupling~6c!
becomes negligible, so that the two fluids decouple; and
hydrogen plasma behaves like the superposition of a cla
cal OCP and a fully degenerate jellium. Asr s increases,
electron polarization effects become increasingly importa
A linear screening treatment of the ion-electron coupling
expected to be accurate up tor s'0.5 @22,14#. At lower den-
sities, nonlinear screening becomes important, which
quires the use of a nonlinear DFT, like that proposed in t
paper. In compressed hydrogen a metal-insulator transi
to the molecular phase is expected beyondr s51.5 ~see, e.g.,
Ref. @15#!, which means that bound states become import
Their quantitative treatment is beyond the scope of
simple DFT used in the present work, so that explicit calc
lations will be restricted to the range 0.5<r s<1.5, which
corresponds to a decrease by a factor 27 in density.
degeneracy parameteru52(4/9p)2/3r s

2(kBT) a.u.'1.72
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57 213DENSITY-FUNCTIONAL THEORY OF PAIR . . .
1026r s
2T K for hydrogen. The range of the calculations w

be limited to temperatures, such thatu<0.08, so that the
electron fluid can always be assumed, to an excellent
proximation, to be in its ground state. A convenient dime
sionless Coulomb coupling parameter is that routinely u
for the OCP, namely,G5e2/aBr skBT51/r s(kBT) a.u.

III. THE FREE-ENERGY FUNCTIONAL

If the ion-electron plasma is subjected to external pot
tials fa(r ) that couple to the microscopic densities~3!, extra
terms must be added to the HamiltonianH; denoting the
unperturbed Hamiltonian defined in Eqs.~1! or ~5! by H0 ,
the total Hamiltonian now reads

H5H01 (
a51,2

E fa~r ! r̃ a~r !dr . ~8!

The external potentials will induce spatial inhomogeneity
the plasma, characterized by the one-particle densitie
density profiles:

ra~r !5^ r̃ a~r !&, a51,2. ~9!

The grand partition function is

J~b,m1 ,m2!5(
N1

(
N2

Tr@exp$2b~H2m1N12m2N2!%#,

~10!

whereb51/kBT. The trace is over the phase space of
ions and over the quantum states of the electrons, and
sums overN1 andN2 are restricted by the charge neutrali
constraintN25ZN1 ; ma is the chemical potential of specie
a. The ground potential divided by2kBT, V5 ln J, is a
functional of

Ca~r !5b@ma2fa~r !#, a51,2. ~11!

The first and second functional derivatives ofV yield the
one-particle densities and the matrix of nonlocal line
response functions or susceptibilities:

dV@C1 ,C2#

dCa~r !
5ra~r !, ~12a!

d2V@C1 ,C2#

dCa~r !dCb~r 8!
5

dra~r !

dCb~r 8!
5xab~r ,r 8!. ~12b!

According to linear response theory@23#,

xab~r ,r 8!5E
0

b\ dl

b\
^D r̃ a~r ;2 il!D r̃ b~r 8!&, ~13!

whereD r̃ a(r ;2 il) is the deviation of the local-density op
erator from its mean at the imaginary time2 il ~Heisenberg
representation!. In the classical (\→0) limit, applicable to
ion-ion and ion-electron correlations

xab
cl ~r ,r 8!5^ r̃ a~r ! r̃ b~r 8!&2^ r̃ a~r !&^ r̃ b~r 8!&

5ra~r !rb~r 8!hab~r ,r 8!, ~14!
p-
-
d

-

or

e
he

-

where hab(r ,r 8)5gab(r ,r 8)21 is the two-point~or pair!
correlation function, whilegab denotes the pair distribution
function ~PDF! for particles of speciesa andb.

A standard Legendre transformation takes us from
grand potential to the dimensionless intrinsic Helmholtz fr
energy, a functional of the density profiles

F@r1 ,r2#52V@C1 ,C2#1(
a

E ra~r !Ca~r !dr .

~15!

F admits the functional derivatives

dF@r1 ,r2#

dra~r !
5Ca~r !, a51,2 ~16a!

d2F@r1 ,r2#

dra~r !drb~r 8!
5

dCa~r !

drb~r 8!
5xab

21~r ,r 8!, ~16b!

where the matrixx21 is the functional inverse of the susce
tibility matrix in Eq. ~12b!.

The free-energy functional is separated into ideal and
cess~nonideal! parts in the usual way:

F@r1 ,r2#5F1
~0!@r1#1F2

~0!@r2#1Fex@r1 ,r2#. ~17!

The inverse susceptibility matrix splits accordingly into tw
parts

xab
215xab

~0!21~r ,r 8!2cab~r ,r 8!, ~18!

where the first~ideal! term is diagonal

xab
~0!21~r ,r 8!5xa

~0!21~r ,r 8!dab , ~19!

while the second~nonideal! term is the matrix of direct cor-
relation functions~DCF’s!. For the classical ions (a51)

x1
~0!21~r ,r 8!5

1

r1~r !
d~r2r 8!. ~20!

Expressing the fact that the matricesx and x21 are func-
tional inverses of each other and using Eq.~14! for x11 and
x12, together with Eq.~20!, one easily arrives at the couple
Ornstein-Zernike~OZ! relations~see, e.g., Ref.@18#!

h11~r ,r 8!5c11~r ,r 8!1h11* ~r1c11!~r ,r 8!

1h12* ~r2c12!~r ,r 8!, ~21a!

h12* ~r2x2
~0!21!~r ,r 8!5c12~r ,r 8!1h11* ~r1c12!~r ,r 8!

1h12* ~r2c22!~r ,r 8!, ~21b!

~x222x2
~0!!* ~x2

~0!21!~r ,r 8!5~r1h12!* ~r2c12!~r ,r 8!

1x22* ~c22!~r ,r 8!, ~21c!

where the asterisk denotes a convolution product. These
relations will be used later in their form appropriate for
homogeneous fluid, for which translational invariance i
plies that ra(r )5na and f ab(r ,r 8)5 f ab(r2r 8) for any
two-point function. Fourier transformation~FT! reduces the
above OZ relations to the form
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214 57HONG XU AND JEAN-PIERRE HANSEN
ĥ11~k!5 ĉ11~k!1n1ĥ11~k!ĉ11~k!1n2ĥ12~k!ĉ12~k!,
~22a!

n2ĥ12~k!

x̂2
~0!~k!

5 ĉ12~k!1n1ĥ11~k!ĉ12~k!1n2ĥ12~k!ĉ22~k!,

~22b!

x̂22~k!2x̂2
~0!~k!

x̂2
~0!~k!

5 ĉ22~k!x̂22~k!1n1n2ĥ12~k!ĉ12~k!.

~22c!

The susceptibility of noninteracting electrons is the we
known Lindhard function@24#

x̂2
~0!~k!52

kF
2

p2 F1

2
1

12q2

4q
lnU11q

12qUG , ~23!

whereq5k/2kF .
By integrating the excess part of Eq.~16b! along a linear

path in one-particle density space, starting from a unifo
reference state, with the same macroscopic densityna ,

ra~r ;j!5na1j@ra~r !2na#5na1jDra~r !, 0<j<1,
~24!

one arrives at the following, exact expression for the intrin
excess free energy of the ion-electron system:

DFex5Fex@r1 ,r2#2F0
ex~n1 ,n2!

52(
a

(
b

E
0

1

dj~12j!E drE dr 8Dra~r !

3cab@r1~j!,r2~j!;r ,r 8#Drb~r 8!. ~25!

The direct correlation function associated with the interm
diate one-particle densities~24! may be expanded in power
of j around those associated with the uniform densitiesna .
In the HNC approximation@9#, only the lowest-order term is
retained, i.e.

cab@r1~j!,r2~j!;r ,r 8#'cab
0 ~n1 ,n2 ;r2r 8!. ~26!

The corresponding, approximate, expression for the ex
free energy reads

DFex52
1

2 (
a

(
b

E drE dr 8Dra~r !

3cab
0 ~n1 ,n2 ;r2r 8!Drb~r 8!

[DF11
ex1DF12

ex1DF22
ex . ~27!

For a purelyclassical mixture, the free-energy functiona
~27! yields, via Eq.~16a! and the Percus identification of th
external potential as that due to a fixed particle of speciea
@4#, to the well-known HNC closure relation@9#. These, to-
gether with the OZ relations~21! adapted to the classica
limit, form a closed set to compute the three PDF’sgab(r ).
In the ion-electron case, where the electrons are degene
the nontrivial relation~13! betweenx22 and the electron den
-

c

-

ss

te,

sity correlation function requires an additional approxim
tion to be made to arrive at a closed set of equations@6,7#.

The approximation made in the present work is most e
ily understood by rewriting the dimensionless intrinsic fr
energy in the form

F@r1 ,r2#5F1
~0!@r1#1F2

~0!@r2#1F0
ex~n1 ,n2!1DF11

ex@r1#

1DF12
ex@r1 ,r2#1DF22

ex@r2#. ~28!

In Eq. ~27!, F1
(0)@r1# for the classical ions is known exactly

F1
~0!@r1#5E r1~r !$ ln@r1~r !L1

3#21%dr . ~29!

The contributionsDF11
ex andDF12

ex are given by the HNC-like
approximation~27!. The remaining terms, which are func
tionals of r2 , are proportional to the intrinsic ground-sta
energy of the inhomogeneous electron gas, as long asu!1:

kBTDF2@r2#5kBT$DF2
~0!@r2#1DF22

ex@r2#%

5E@r2#2E~n2!. ~30!

The terms corresponding to the homogeneous ion-elec
plasma are funtions of the macroscopic densitiesn1 andn2 ,
not functionals ofr1 and r2 , and are hence irrelevent fo
what follows.

In Refs.@6# and@7#, E@r2# is calculated within the Kohn-
Sham approximation. In this work a simpler, orbital-free re
resentation is used. The functional is split into its kine
~noninteracting!, Hartree, and exchange contributions, a
cording to

E@r2#5EK@r2#1EH@r2#1EX@r2#. ~31!

For the kinetic-energy functional, we adopt either of tw
approximations.

~a! One is Thomas-Fermi plus square-gradient correct
~von Weizsa´cker! approximation@TF-W~l!#

EK@r2#5CKE @r2~r !#5/3dr1
l

8 E u¹r2~r !u2

r2~r !
dr ,

~32a!

with CK53(3p2)2/3/10. The precise value ofl has been the
object of a long-standing debate in atomic physics@16#. A
rigorous gradient expansion predictsl51/9, while in von
Weizsäcker’s original derivationl51. This value leads to
the exact linear response of the noninteracting electron
on the short-distance~large-wave-number! scale, whereas
l51/9 guarantees the correct linear response at large
tances~i.e., small wave numbers!. Empirically it is known
that l'1/5 yields the best ground-state energies of ma
atoms@16#.

~b! The other is functional proposed by Perrot, which i
terpolates correctly between these two regimes and gua
tees the exact linear response@as described by the Lindhar
susceptibility~23!# on all scales:
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57 215DENSITY-FUNCTIONAL THEORY OF PAIR . . .
EK@r2#5CKE @r2~r !#5/3dr1
1

8 E u“r2~r !u2

r2~r !
dr

1
V

2 (
k

H 1

xw~k!
2

1

x~0!~k!J r̂2~k!r̂2~2k!.

~32b!

In this equationl has been chosen to be equal to 1.r̂2(k) is
the FT of the electron density profiler2(r ), x (0)(k) is the
Lindhard susceptibility~23! ~the index 2 has been dropped!,
andxw(k) is the approximate susceptibility of the noninte
acting electron gas, as derived from the kinetic-energy fu
tional ~32a! ~with l51!, namely,

xw~k!52
kF

p2

1

113q2 , ~33!

where again q5k/2kF . It is easy to check tha
xw(k)→x (0)(k) when q→`, as indicated earlier. The re
maining terms in the energy functional~31! are taken to be

EH@r2#5
1

2 E drE dr 8
Dr2~r !Dr2~r 8!

ur2r 8u
, ~34!

EX@r2#5CXE @r2~r !#4/3dr , ~35!

where the local-density approximation~LDA ! has been
adopted for the exchange term andCX523(3/p)1/3/4.

Within the same approximation, an electron correlat
term could be easily added; in the ranger s<1.5, which has
been explored in this work, this term is expected to be v
small and has been neglected for the sake of simplic
Equations~28!–~35! completely define the free-energy fun
tional of the ion-electron plasma used in the present wo
Criteria for an optimum choice of the factorl in the square-
gradient correction, when the kinetic-energy functional~32a!
is used, will be spelled out in the subsequent sections of
paper.

IV. A PRELIMINARY APPLICATION:
THE ION-SPHERE MODEL

The functional defined in Sec. III will be applied first to
highly simplified model of the ion-electron plasma, name
the so-called ion-sphere~IS! model. The IS model is itself a
simplification of the Wigner-Seitz model for the descriptio
of ionic crystals, where the total volume is divided intoN1
identical, space-filling polyhedra, called Wigner-Seitz ce
having an ion in their center. In the ion-sphere model,
Wigner-Seitz polyhedron is replaced by a sphere of ident
volumev5V/N and hence of radiusa1 . The ion, of charge
Ze, is fixed at the center, whileZ electrons are nonuniformly
distributed over the volumev. Each sphere being electricall
neutral, the total Coulomb interaction between different
spheres vanishes, according to Gauss’s theorem. It is h
sufficient to consider a single IS and to minimize the cor
sponding total-energy functional with respect to the sph
cally symmetric electron density profiler2(r ), subject to the
constraint
c-

n

y
y.

k.

e

,

,
e
al

n
ce
-
i-

4pE
0

a1
r 2r2~r !dr5Z. ~36!

The ‘‘external’’ potentialf2(r ) is provided here by the cen
tral ion. When the kinetic-energy functional~32a! is adopted,
the Euler-Lagrange equation associated with Eq.~16a!,
whereC(r )5m21Z/r , reads

l

8 H Fr28~r !

r2~r ! G2

2
2r29~r !

r2~r !
2

4

r

r28~r !

r2~r ! J 1
5

3
CK@r2~r !#2/3

1
4

3
CX@r2~r !#1/35m22F~r !, ~37!

where the total electrostatic potentialF(r ) is a solution of
Poisson’s equation

F9~r !1
2

r
F8~r !54pr2~r !, r .0, ~38!

and satisfies the boundary conditions

lim
r→0

rF~r !5Z, ~39a!

F8~r 5a1!50. ~39b!

A similar albeit integro-differential Euler-Lagrange equatio
holds if the Perrot kinetic-energy functional~32b! is adopted.

Numerical solutions of the coupled equations~37!–~39!
are easily obtained for any value ofl. Examples for a few
values ofl are compared in Fig. 1 to the density profi
r2(r ) derived from the Perrot functional in the case of h
drogen (Z51). Only the valuel51 yields the exact cusp
condition

FIG. 1. g12(r ) from the ion-sphere model with TFW~l! and
Perrot kinetic-energy functionals, atr s50.5 andr s51. The long-
dashed lines representg12(r )’s from the Perrot functional, the solid
lines those from the TFW functional withl50.41, and the dotted
lines those withl51. For each functional used, the lower curve
for r s50.5 and the upper curve forr s51.
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TABLE I. Internal energy per ion~e! and the pressureP/n1 of the hydrogen plasma atT533103 and
104 K, for r s50.5, 1, and 1.5. The various theories presented here are denoted as follows:~a! IS~0!, the
simple homogeneous electron gas model;~b! IS~P!, the ion-sphere model of Sec. IV using the Perrot kine
energy functional;~c! IS~W!, same as~b! except that the von Weizsa¨cker functional is used (l50.41); ~d!
HNC, energy and pressure calculated fromg11(r ) andg12(r ) of the present HNC-TFW theory~Sec. V! and
Eqs.~60!–~62!.

T ~K! r s

e ~hartree! P/n1 ~hartree!

IS~0! IS~P! IS~W! HNC-TFW IS~0! IS~P! IS~W! HNC

104 0.5 1.703 1.629 1.646 1.910 2.041 2.013 2.048 2.22
33103 1.703 1.629 1.646 1.773 2.041 2.013 2.048 2.132
104 1.0 20.2532 20.2969 20.3283 20.1755 0.2839 0.2854 0.2941 0.421
33103 20.2532 20.2969 20.3283 20.2534 0.2839 0.2854 0.2941 0.355
104 1.5 20.4144 20.4571 20.4993 20.4446 0.0256 0.0357 0.0442 0.133
33103 20.4144 20.4571 20.4993 20.4959 0.0256 0.0357 0.0442 0.081
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lim
r→0

d

dr
ln r2~r !522, ~40!

which is also satisfied by the Perrot functional. The latt
although presumably more accurate, is numerically m
more demanding, particularly in the context of the HN
theory developed in Sec. V. For the sake of simplicity, it
natural to seek the ‘‘optimum’’ value ofl, which would lead
to the best agreement between the results based on
kinetic-energy functionals~32a! and ~32b!. A possible crite-
rion is to seek the value ofl that matches the ground-sta
energies:

E05EK1EC1EX

5EK22pE
0

a1
r2~r !r dr 22pE

0

a1
r2~r !F~r !r 2dr

1CX4pE
0

a1
@r2~r !#4/3r 2dr, ~41!

whereEK is calculated from either Eq.~32a! or ~32b! andEC
denotes the total Coulomb~potential! energy. This yields
l'0.3 at r s50.5 andl'0.70 atr s51. Ground-state ener
gies are listed in Table I, together with the correspond
values of the pressure, as deduced from the virial theore

P5
n2

3
@2EK1EC1EX#. ~42!

One can notice that the energy and pressure values pred
from either Eq.~32a! or ~32b! are quite close. Note that th
predictions of the ion-sphere model may be looked upon
representing approximately the zero-temperature limit of
ion-electron plasma, since each ion is assumed to be
fixed at the center of its sphere. It is interesting to comp
our predictions to those of a simple IS model@9#, where
electron polarization is completely neglected, so that th
contribution to the internal energy reduces to that of a u
form electron gas occupying the volume of the IS. The to
energy and the virial pressure obtained from this model
shown in Table I. The difference between the ‘‘rigid’’ an
,
h

the
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ted

s
e
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e
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the ‘‘responding’’ electron-gas results is surprisingly sma
as was already concluded from the linear screening resul
Ref. @22#.

V. ION-ION AND ION-ELECTRON CORRELATIONS

In order to determine the ion-ion and ion-electron p
distribution functionsg11(r ) and g12(r ), we resort to Per-
cus’s identification of the latter with the spherically symme
ric, normalized density profilesr1(r )/n1 and r2(r )/n2 of
ions and electrons in the ‘‘external field’’ due to one io
assumed to be held fixed at the origin@4#. The dimensionless
potentialsCa(r ) appearing in Eq.~16a! are correspondingly
b(m11Z2/r ) and b(m22Z/r ). Adopting the approximate
ion-electron functional defined by Eqs.~27!–~31!, with either
Eq. ~32a! or ~32b! for the electron kinetic energy, the com
bination of the four equations~16a!, ~16b!, ~21a!, and~21b!
forms a closed set for the calculation ofg11(r ), g12(r ),
c11(r ), andc12(r ). The DCFc22(r ) that enters the OZ rela
tion ~21b! is uniquely determined by the choice~31!, with
the LDA form ~35! for EX , namely, according to Eqs.~16b!
and ~18!,

kBTc22~r2r 8!52
d2$EH@r2#1EX@r2#%

dr2~r !dr2~r 8!

5
4

9
CX

d~r2r 8!

@r2~r !#2/32
1

ur2r 8u
. ~43!

Note that within the present approximation for the fre
energy functional, the third OZ relation~21c! is not needed
to close the system. Substituting Eqs.~27!–~29! into Eq.
~16a! for a51, Percus’s identification, together with the O
relation~21a!, leads directly to the HNC closure equation f
g11(r ):

g11~r !5exp$2bv11~r !1h11~r !2c11~r !%, ~44!

wherev11(r )[f1(r )5Z2/r .
Similarily, substitution of Eqs.~28!–~30!, ~31!, and~32a!

into Eq. ~16a! for a52 leads to the following integro-
differential equation, which generalizes Eq.~37! to the
present, multi-ion case:
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l

8 H Fr28~r !

r2~r ! G2

2
2r29~r !

r2~r !
2

4

r

r28~r !

r2~r ! J 1
5

3
CK@r2~r !#2/3

1
4

3
CX@r2~r !#1/32E Fc12~r2r 8!2

1

ur2r 8uGr1~r 8!dr 8

5m22F~r !, ~45!

where the electrostatic potential

F~r !52v12~r !1ZE r1~r 8!

ur2r 8u
dr 82E r2~r 8!

ur2r 8u
dr ,

~46!

with v12(r )[f2(r )52Z/r , is a solution of Poisson’s equa
tion

F9~r !1
2

r
F8~r !54p@r2~r !2Zr1~r !# ~47!

satisfying the boundary conditions

lim
r→0

rF~r !5Z, ~48a!

F8~r 5R!50. ~48b!

R is the radius of a sphere around the central ion, cho
sufficiently large for the density profiles to have reach
their bulk valuesn1 andn2 within a given accuracy; in prac
tice, R was chosen to be about 50a1 in the numerical calcu-
lations.

Equation ~45!, with r25n2g12(r ), provides the second
closure relation. The associated OZ relations are given
Eqs. ~22a! and ~22b! in their k-space representation. In th
Appendix some details are given concerning the iterative
lution of the closed set of equations~44!, ~45!, ~22a!, and
~22b!.

A convenient but uncontrolled shortcut is provided by t
mean-field approximation

kBTc12~r !'2v12~r !5
Z

r
, ~49!

which greatly simplifies Eq.~45!, since the latter now con
tains only the unknown functionsra(r )5nag1a(r )
(a51,2). With the ansatz~49!, only three out of the four
equations~44!, ~45!, ~22a!, and~22b! are needed to close th
system, but the latter is no longer self-consistent. For
sake of a comparison with the full~self-consistent! theory,
we have solved the set of equations~44!, ~45!, and ~22a!,
assuming~49!. The results from this set will be referred to a
‘‘mean-field’’ theory. They generally provide the input fo
an iterative solution of the full, self-consistent theory.

For the latter, we have systematically adopted the simp
Thomas-Fermi plus square-gradient@TF-W~l!# kinetic-
energy functional~32a! rather than the more acurate Perr
functional ~32b!, which greatly complicates the numeric
work. This leaves open the choice of the optimum value
the parameterl in Eq. ~32a!. An energy criterion within the
ion-sphere model was proposed in Sec. IV. Equating
ground-state energies derived from the two kinetic-ene
functionals~32a! and~32b! leads to an optimuml that varies
n
d

y

o-

e

r,

t

f

e
y

with r s , but is independent ofG ~zero-temperature limit!. An
alternative criterion is based on the observation that line
response theory yields an adequate description of elec
screening at very high densities (r s,1), where the degener
ate electrons are only weakly polarized by the external
tential due to the ionic charge distribution@14#. The mean
response of the Fourier component of the electron densit
the latter is

r̂2~k!'^ r̃ 2k&25x̂2~k! r̃ 1kv̂12~k!, ~50!

where r̂2(k) is the FT of the electron density profile~9!,
which is obtained by averaging the FT of the electron den
operator~3! over electronic degrees of freedom~symbolized
by ^ &2! for a given ionic configuration characterized by th
Fourier componentr̃ 1k of the ionic density operator. Fo
r s,1, local-field corrections are quite negligible, so the s
ceptibility x̂2(k) is well approximated by the random-pha
approximation@25#

x̂2~k!5
x̂2

~0!~k!

12 v̂12~k!x̂2
~0!~k!

, ~51!

wherex̂2
(0)(k) is the free-electron susceptibility, given by th

Lindhard function~23!. The resulting expression for the ion
electron PDF within the linear-response approximation re
@14#

n2g12
LR~r !5

1

~2p!3 E dkeik•r
1

N
^ r̃ 1k r̃ 22k&

'
1

~2p!3 E dkeik•rx̂2~k!S11~k!v̂12~k!. ~52!

S11(k) is taken to be the structure factor of the OCP~with
electrons just providing a uniform background! in order to
obtain g12(r ) consistently to first order in the ion-electro
coupling. l is now adjusted so that the first minimum o
g12

l (r ) coincides with that ofg12
LR(r ). We found that this

procedure reproduces the overall structure of the electro
PDF better than a direct fitting by minimization of the mea
square deviation because of a slight dephasing ofg12

l (r ) with
respect tog12

LR(r ) that appears atr>a1 for l,1. The fitting
to the linear-response result is justified atr s50.5, where
electrons are only weakly polarized by the ionic charge d
tribution. The optimization procedure yieldsl'0.41, nearly
independently ofG. This value will be kept throughout the
subsequent calculations. A similar fitting carried out f
r s51, where linear response is much less justified@14#, leads
to an optimum valuel close to this adopted value o
l50.41. Explicit calculations of the pair structure were ca
ried out for r s50.5, 1, and 1.5 along two isothermsT5104

and 33103 K and along a constant coupling path (G510).
The relative inadequacy of the mean-field approximat

embodied in Eq.~49!, relative to the full self-consisten
theory, is illustrated in Fig. 2, where the ion-ion structu
factors are shown. The observed differences, particularl
small k ~which governs the equation of state via the co
pressibility equation!, are sufficiently large to warrant com
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plete self-consistent calculations throughout, despite the
nificantly larger numerical effort.

Results along theG510 path are shown in Figs. 3–5 an
are compared with Chihara’s quantum HNC~QHNC! results
where available@7#. The qualitative tendencies are as e
pected, in particular the dramatic piling up of the electr
density near the protons with increasingr s , as shown by
g12(r ) in Fig. 5. Figure 4 exhibits strongly enhanced lon
wavelength ion density fluctuations asr s increases, which
may be interpreted as precursors to atomic recombinat
i.e., of a plasma phase transition@26#. Note, however, that
the formation ofH2 molecules cannot be easily describ

FIG. 2. S11(k) from the mean-field approximation~dotted line!
compared to that obtained by the full self-consistent theory~solid
line! with l50.41.

FIG. 3. g11(r ) from the self-consistent HNC-TFW theor
(l50.41) versusr /a1 along the pathG510 for r s50.5 ~solid line!,
1 ~dotted line!, and 1.5~dashed line!. The QHNC results of Chihara
@7# are also shown atr s50.5 ~d! and r s51 ~m!.
g-

-

n,

within the present theoretical framework.
Results along theT5104 K isotherm are shown in Figs

6–8. As expected, the ion-ion structure, represented
g11(r ) in Fig. 6 andS11(k) in Fig. 7, diminishes dramatically
as r s increases, i.e., with increasing electron screening. T
HNC results forr s50.5 exhibit slightly less structure tha
the ab initio molecular-dynamics~MD! data @14#, as might
be expected from HNC theory. The enhancement of lo
wavelength density fluctuations atr s51.5 is again very sig-
nificant, as seen from Fig. 7. The HNC results forg12(r )
agree well with theab initio MD data for ion-electron dis-
tancesr>0.5a. The large differences at shorter distanc
result from a combination of two errors: The MD data, whi

FIG. 4. S11(k) from the self-consistent HNC-TFW theor
(l50.41) versuska1 along the pathG510 for r s50.5 ~solid line!,
1 ~dotted line!, and 1.5~dashed line!.

FIG. 5. Same as Fig. 4, but representingg12(r ) versusr /a1 . The
QHNC results of Chihara@7# are also shown atr s50.5 ~d!.
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are seen to have zero slope at the origin, are strongly affe
by the energy cutoff in the plane-wave expansion of
Kohn-Sham orbitals, while the HNC results, although th
correctly exhibit a nonzero slope, do not satisfy the ex
cusp condition, which holds only if the choicel51 is made
in the square-gradient term.

Finally, Figs. 9–11 display the results for the lowe
temperature isothermT533103 K. The ion-ion pair struc-
ture forr s50.5 andr s51 @whereg11(r ) agrees well with the
MD data, although the HNC results appear to be sligh
more structured in this case# looks again as expected, but th
results atr s51.5 do not follow the pattern observed at high
temperature since they exhibitmore structure than their
r s51 counterparts. There is once more a clear-cut enha

FIG. 6. g11(r ) along the isothermT510 000 K for r s50.5, 1,
and 1.5. Curves for differentr s are denoted as in Fig. 4. Also show
are results from the MD simulation@14# for r s50.5 ~d!.

FIG. 7. Same as Fig. 4, but along the isothermT510 000 K.
ed
e
y
t

y

r

e-

ment of S11(k) at small k. We are clearly in a situation
where a naive electron screening picture is insufficient
explain the observed behavior, which may be, loosely spe
ing, associated with a plasma-insulator transition.

VI. REDUCTION TO AN EFFECTIVE
ONE-COMPONENT SYSTEM

In asymmetric binary mixtures it is often instructive an
convenient to reduce the initial two-component system to
effective one-component system involving only the prope
‘‘dressed’’ particles of the larger or heavier component
integrating out the degrees of freedom of the smaller~lighter!
species. This is a customary procedure in the theory of m
als, where averages are taken over the ground state o

FIG. 8. Same as Fig. 6, but representingg12(r ).

FIG. 9. Same as Fig. 6, but along the isothermT53000 K. The
d denote the MD simulation@14# results forr s51.
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220 57HONG XU AND JEAN-PIERRE HANSEN
conduction electrons, for any given configuration of the io
leading to an effective, screened interaction between dre
ions or ‘‘pseudoatoms’’@27#. A formal reduction of the ini-
tial ion-electron system to a one-component system
pseudoatoms can be carried out by a simple manipulatio
the Ornstein-Zernike relations@28#, and an expression for th
effective pair potential between pseudoatoms can then
derived from the HNC closure@29#. The FT of the OZ rela-
tion ~21a! reads

ĥ11~k!5 ĉ11~k!1n1ĥ11~k!ĉ11~k!1n2ĥ12~k!ĉ12~k!.
~53!

The corresponding OZ relation for the effective on
component system of pseudoatoms is

ĥ~k!5 ĉ~k!1nĥ~k!ĉ~k!, ~54!

FIG. 10. Same as Fig. 4, but along the isothermT53000 K.

FIG. 11. Same as Fig. 9, but representingg12(r ).
,
ed

f
of

be

-

wheren5n1 . By identifying ĥ(k) with ĥ11(k) ~the fluid of
pseudoatoms is required to have a pair structure identica
that of the ions in the initial ion-electron plasma!, one arrives
immediately at the following expression for the DCF of th
effective fluid in terms of the correlation functions of th
ion-electron plasma:

ĉ~k!5 ĉ11~k!1
n2ĥ12~k!ĉ12~k!

S11~k!
. ~55!

To extract the effective pair potential between pseudoato
veff(r), one compares the exact closure relations forg11(r )
andg(r ), namely,

g11~r !5exp$2bv11~r !1h11~r !2c11~r !1B11~r !%,
~56a!

g~r !5exp$2bveff~r !1h~r !2c~r !1B~r !%, ~56b!

whereB(r ) and B11(r ) are the~unknown! bridge functions
associated with the one and two-component representa
of the plasma. Making once more the identificatio
g(r )[g11(r ), and making the reasonable assumption t
B(r )5B11(r ) ~the bridge functions are in fact taken to b
identically zero in the HNC approximation!, one arrives,
with the help of Eq.~55!, at the expression for the effectiv
pair potential

b v̂eff~k!5b v̂11~k!2
n2ĥ12~k!ĉ12~k!

S11~k!
. ~57!

With the help of Eq.~21b!, one easily checks that this ex
pression for the FT of the effective potential is identical
that derived by Chihara@29#. It can be shown from the OZ
relations~22b! and~22c! that if ĥ12(k) is approximated by its
linear response limit~52!, then ĉ12(k) reduces to the mean
field limit ~49!. Substituting these results into Eq.~57!, the
familiar temperature-independent expression for the effec
ion-ion potential is recovered@19#, namely,

v̂eff~k!5 v̂11~k!@12x2~k!v̂12~k!#5
4p

k2

1

e2~k!
, ~58!

where e2(k) is the dielectric function of the homogeneou
electron gas@25#.

The HNC results for the pair structure of the ion-electr
plasma, presented in Sec. V, have been used to comput
state-dependent effective pair potential. The variation
veff(r) with r s along the isothermsT5104 and 33103 K is
shown in Figs. 12 and 13. As expected, the range of
effective interaction between dressed ions is seen to decr
dramatically asr s increases. The importance of nonline
screening as well as of temperature effects is illustrated b
comparison with the effective potential~58! valid in the lin-
ear screening regime, which is identical for the two tempe
tures. At the lowest density (r s51.5), the nonlinearveff(r)
exhibits a shallow attractive well at the higher temperat
and a marked oscillatory behavior at the lower temperatu
the latter should not be confused with the familiar Fried
oscillations, which occur at larger distances and are a co
quence of the singularity of the Lindhard function~23! at
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57 221DENSITY-FUNCTIONAL THEORY OF PAIR . . .
k52kF @25,27#. The oscillations seen in Fig. 13 rather refle
the strong ion-ion and ion-electron correlations at low te
peratures and may be a signature of an incipient plas
insulator transition@15#.

VII. THERMODYNAMIC PROPERTIES

Explicit calculations of thermodynamic properties of io
electron plasmas within the DFT framework have not be
considered so far, except within the ion-sphere model@30#.
This is due to the difficulty of deriving exact and operation
expressions for the internal energy, the pressure, etc., f
the pair distribution functions obtained in Sec. V. For pure

FIG. 12. Effective ion-ion pair potentialveff(r) reduced over
kBT along the isothermT510 000 K for r s50.5, 1, and 1.5.
Curves for differentr s are denoted as in Fig. 4. Also shown a
results from the linear-response theory@Eq. ~58!#, with d, m, and*
for r s50.5, 1, and 1.5, respectively.

FIG. 13. Same as Fig. 12, but along the isothermT53000 K.
t
-
a-

n

l
m

classical systems, there exist three routes to thermodynam
starting from the distribution functions, namely, the energ
virial, and compressibility routes@9#. The latter still holds for
metallic systems composed of classical ions and degene
electrons, as considered here; for a hydrogen plasma,
isothermal compressibility follows accordingly from@9#

lim
k→0

S11~k!5 lim
k→0

S12~k!5 lim
k→0

S22~k!5n1kBTxT .

~59!

In practice, the structure factors calculated within t
HNC–TF plus von Weizsa¨cker ~TFW! scheme of Sec. V are
extrapolated tok50 and the values ofxT according to Eq.
~59! are listed in Table II. The equation of state~pressure
versus density along isotherms! requires a numerical integra
tion of xT

215n(]P/]n)T . Turning to the energy route, it is
clear that the~purely Coulombic! ion-ion and ion-electron
contributions can be calculated fromg11(r ) andg12(r ). The
HNC-TFW theory does not yieldg22(r ), which would allow
the electron-electron Coulomb energy to be evaluated, w
the kinetic and exchange contributions cannot be expres
in terms of pair distribution functions alone. Approxima
estimates of these contributions are obtained by substitu
r25n2g12(r ) into the energy functional defined by Eq
~31!, ~32a!, ~34! and ~35!, restricting the domain of integra
tion to the volume of an ion sphere. The proposed expres
for the internal energy per ion thus reads

E

N1
5eK

1 1eC
111eC

121eK
2 1eC

221eX
2, ~60!

where

eK
1 5 3

2 kBT, ~61a!

eC
1152pn1E

0

`

v11~r !@g11~r !21#r 2dr, ~61b!

eC
1254pn2E

0

`

v12~r !@g12~r !21#r 2dr, ~61c!

eK
2 54pCKn2E

0

a1
@g12~r !#5/3r 2dr

1
pl

2
n2E

0

a1 @g128 ~r !#2

g12~r !
r 2dr, ~61d!

eC
225

n2
2

2 E
r ,a1

drE
r 8,a1

dr 8v22~ ur2r 8u!@g12~r !21#

3@g12~r 8!21#, ~61e!

eX
254pCXn2E

0

a1
@g12~r !#4/3r 2dr. ~61f!

The same approximation leads, via the virial route, to
expression for the equation of state

P

n1kBT
511

1

3kBT
@eC

111eC
1212eK

2 1eC
221eX

2 #. ~62!
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TABLE II. Isothermal compressibility (x
T
) of the hydrogen plasma atT533103 and 104 K, for r s50.5,

1, and 1.5. Columns 4–6 are obtained by a numerical differentiation of the virial equations~42! and ~62!,
while the values of columns 3–5 are based on ion-sphere models~cf. Table I for notations! and those of
columns 6@denoted HNC~v!# are based on our HNC-TFW theory@cf. Eqs. ~60!–~62!#. The last column
@HNC~c!# representsxT given by the fluctuation relation~59!.

T ~K! r s

xT (aB
3/hartree)

IS~0! IS~P! IS~W! HNC~v! HNC~c!

104 0.5 0.1416 0.1423 0.1402 0.1353 0.1489
33103 0.1416 0.1423 0.1402 0.1470 0.1495
104 1.0 6.725 6.712 6.646 5.539 8.418
33103 6.725 6.712 6.646 6.109 17.83
104 1.5 99.04 101.2 98.30 60.54 121.5
33103 99.04 101.2 98.30 75.62 506.3
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Estimates of the thermodynamic properties based on th
approximate expressions are listed in Table I and compa
with the predictions of the simple ion-sphere model int
duced in Sec. IV. Compressibilities obtained by numeri
differentiation of the virial pressure~62! are compared in
Table II with the compressibilities calculated from the exa
fluctuation relation~59!. The agreement is satisfactory fo
r s50.5 andr s51 at the higher temperature (T5104 K), but
deteriorates for r s51 at the lower temperature (T53
3103 K) and generally forr s51.5, wherexT increases rap-
idly. This large discrepancy may be ascribed to the appro
mate nature of the virial expression~62! for the pressure and
to the familiar thermodynamic inconsistency of the HN
closure@9#.

VIII. CONCLUSIONS

The present paper introduces a simple DFT of io
electron plasmas, which avoids using the Kohn-Sham or
als and yet compares favorably with earlier formulatio
based on the latter. The good accuracy of the theory, ev
ated relative to the scarcely availableab initio MD simula-
tions, is due to the introduction of gradient corrections to
TF theory, provided the crucial prefactorl is determined by
a confrontation with the predictions of linear-response the
of very high densities (r s50.5). The theory is easily imple
mented numerically. An attempt has been made to derive
equation of state of the ion-electron plasma from these
relation functions; the calculated energies and pressures
surprisingly close to the predictions of the much simpler io
sphere model, which ignores ion-ion correlations and he
cannot provideg11(r ).

The pair structure calculated at the lowest density con
ered in this work (r s51.5) exhibits a marked qualitativ
difference between the high- (T5104 K) and low-
temperature (T533103 K) results. Although the presen
theory cannot, of course, account for genuine bound sta
the low-T data may be interpreted in terms of an incipie
plasma-insulator transition, where the insulator phase c
tains recombined ion-electron pairs, i.e., atoms. The ‘‘sym
toms’’ of such a recombination are the enhanced ion-
structure observed atr s51.5, relative to that obtained a
higher densities, the significant enhancement of lo
wavelength ion density fluctuations, as evidenced byS11(k)
se
ed
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in thek→0 limit, and the marked oscillatory behavior of th
effective ion-ion pair potential shown in Fig. 13. A furthe
indication is the rapidly increasing difficulty of achievin
convergence of the HNC-TFW equations asr s increases be-
yond 1.5. Such a lack of convergence is usually associa
with the proximity of a phase transition.

Despite many efforts in that direction, the plasm
insulator transtion in hydrogen is far from being understo
Because in its present form the DFT theory put forth in t
paper cannot properly account for the molecular phase,
observed low-density behavior can only be looked upon
indicative. To obtain a clear picture of the scenario of t
plasma-insulator transition, we plan to consider the simp
situation of spin-polarized hydrogen, which excludes the f
mation of H2 molecules from the outset; this case will r
quire only minor modifications of the present theory. W
also plan to extend the DFT theory to H-He mixtures und
very high pressures, for which a demixing transition h
been predicted@31,32# and for whichab initio MD data re-
cently have become available@33#.
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APPENDIX

We give here some details concerning the numerical
lution of the self-consistent theory for the pair correlatio
displayed in Sec. V. The closed set of equations contain
the unknown pair functionsh11(r ), h12(r ), c11(r ), c12(r ),
and c22(r ) are given by Eqs.~22a!, ~22b!, and ~43!–~45!,
complemented by the definition of the potentialF(r ) in Eq.
~46! and the Poisson equation~47! obeyed byF(r ). We
notice also that Eq.~43! gives directlyc22(r ) in the LDA
approximation.

To start the iteration loop, an initial guess ofc12(r ),
h12(r ), andg(r )[h11(r )2c11(r ) is made. A convenient ini-
tial guess for c12(r ) is its mean-field approximation
c12(r )52bv12(r ). The following steps are then taken at th
(n11)th iteration.

~a! The HNC integral equation~44! is solved by following
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the numerical method proposed by Ng@34#, except that we
use here the Anderson mixing scheme@35#. The R space is
discretized with segments of sizedr 50.05a1 . Convergence
is achieved if the norm of the difference ofg(r ) ~as defined
by Ng! between two consecutive iterations is less th
10210. This step yieldsh11

(n11)(r ) andc11
(n11)(r ).

~b! With g11(r )5h11(r )11 obtained in~a!, we solve the
coupled second-order ordinary differential equations~45!
and ~46! for g12(r ) and the auxiliary functionF(r ). The
boundary conditions for the potential functionF(r ) are
given by Eqs.~48a! and ~48b!; those forg12(r ) are simply
limr→0 r 2g12(r )50 andg12(r 5R)51, whereR is the radius
of the larger sphere surrounding the central ion (R'50a1),
representing the boundary of our system. The numer
method used is a ‘‘relaxation method’’@36# consisting of
first replacing the ordinary differential equations by appro
mate finite-difference equations and then solving the la
using a multidimensional Newton’s method by taking in
account the boundary conditions. The initial guess ‘‘relaxe
s

o

e
.

n

al

-
r

’’

then to the solution of the finite-difference equations. W
have divided the system lengthR into segments of size
h5R/204850.025a1 in order to have a good resolution o
Eqs.~45! and ~46!. The tolerance parameter~controlling the
convergence! is set to 10214. This step gives usg12

(n11)(r ) in
the iteration process.

~c! The Fourier transforms ofh11
(n11)(r ) and h12

(n11)(r )
obtained by~a! and ~b! are injected into the right-hand sid
of a slightly rearranged form of the OZ relation~22b!, i.e.,

ĉ12~k!5
n2ĥ12~k!

S11~k! F 1

x2
~0!~k!

2 ĉ22~k!G .
The self-consistency of the solutions is achieved if the rig
hand side@representingc12

(n11)(r )] and the input from the
preceding iteration,c12

(n)(r ), agree within 0.01%. Otherwise
a mixing of c12

(n11) and c12
(n) is processed and the iteratio

loop returns to point~a!.
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